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1 Abstract 

 
In order to obtain an estimation for oblique 3D PET data, proper interpolation windows 
must be designed between the data and image spectra. Such a window must be finite in the 
time-domain (i.e., the sinc interpolator, while ideal, is not a practical candidate) and have 
coefficients that maximize the signal-to-noise ratio after filtering. It is shown in this novel 
algorithm that the parameters of the Modified Kaiser-Bessel function (MKB) can be 
optimized to afford good image quality without the need to zero-pad or oversample. This 
optimization was carried out for both the forward projection and reconstruction processes. 
It was found that the parameter values, and robustness to the extent of zero padding, were 
different for the two steps.  

 
2 Introduction and Background 
 
There is a great thrust to optimize 3D PET because it is a modality with extremely high spatial 
sensitivity; volumes of activity that are close together can be distinguished. There is a 
compromise, however, with the sensitivity to randoms and scatters (since Lines of Response may 
occur between any pair of detectors), which must be attenuated using other algorithms. Detector 
design, then, is an important aspect of 3D PET optimization (Bailey et al., 1996).  

In 2D PET, the resultant image is simply the 2D IDFT of the DFT of the back-projection 
(modulated by a rho filter) of all projections of the 2D DFT of the data. In order to apply this sort 
of reconstruction to 3D PET, a more complex filter must be used on the DFT of the back-
projection. This is because an infinite number of projections cannot be obtained with the oblique 
data  (the rho filter approximates an infinite number of projection angles). Thus, the 
reconstruction of images from 3D Positron Emission Tomography (PET) is complicated by the 
finite geometry of the detector system. If the radiated angle (of photons) is sufficiently large, 
oblique annihilation events usually miss the detector, and thus are not counted in the gamma 
(pulse height) spectrum. 

The estimation of missing data points from 3D projections is, hence, an integral part of 
the reconstruction process. Many different algorithms have been developed to implement this 
estimation. Some classes will be reviewed and discussed herein. The first sort of strategy 
comprises iterative-based approaches, in which the estimation step is implicit and recursive. One 
salient example of this form of estimation is the Expectation – Maximization (EM) algorithm, in 
which the expected likelihood of each event (across the projection space) is maximized. For PET 
(Rajan et al., 1994), it is assumed that the maximum likelihood function depends on a parameter 
of a Poisson process (i.e., the number or photons that are emitted from a volume). In the Order 
Subsets Expectation Maximization (OSEM) algorithm, EM is applied to segments of data 
(Hudson and Larkin, 1994). The Fourier Rebinning (FORE) algorithm is rather unique because it 
reduced a 3D data space into 2D sinograms (Kinahan et al, 2000).  

The other strategies, one of which is optimized in this paper, are known as Fourier-based 
reconstructions (FRP). The utility of FRP is contingent on the parameters (which determine the 
time and frequency behaviors) of an interpolating function that is used to both forward-project 
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the image spectrum back into an estimate data spectrum, and in the reconstruction process. The 
FRP algorithms are amenable to the Fast Fourier Transform (FFT), which can reduce the number 
of complex multiplications by a factor of , where  is the zero-padded length of the signal. 
This becomes important in instances where real-time (or approximately real-time) volumetric 
rendering is an assay for the time-course of the radionuclide.   

n2 n

 
3 Theory of Direct Fourier Methods 
 
From the truncated oblique data, obtained by 3D PET, there exists at least one axial plane (i.e., in 
the plane of the scintillators) in which the 2D Fourier transform of the projection (along a 
defined angle) is equivalent to a line though the 3D Fourier transform of the image. This is a 
direct consequence of the Fourier Slice Theorem (alternatively known as the Projection Slice 
Theorem). To show that this is true, consider the projection of an arbitrary cross-sectional area of 
a volume in ,nℜ ( )ji xxf , . The slice though the Fourier transform is: 
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where ( )pxfp ,  is the projection of along . This method can be used to acquire lines through 
the data spectrum, since a 1D projection can be obtained with each complete 2D data set. Thus, 
the reconstruction of 3D data from 2D data is highly amenable to this method during the 
reprojection stage. In the present algorithm, the PET data is usually rendered in polar 
coordinates, and the analogous formulation for the projection along subspace

f px

θ  is as follows 
(after Matej and Kazantsev, 2006): 
 

( ) ( ) tdtuxrp ∫ℜ +=
1

, θθ                                                        (1) 

 
Thus, the Slice Theorem can be rewritten from (1) to yield 
 
                                               ( ) ( )n

nn xxfrp ...,, 0
)()1( ℑ=ℑ − θ                                            (2) 

 
In Filtered Back-Projection (FBP), the original image, , is obtained by projecting each 1-D 
projection upon the appropriate line of response (in this case, designated by the subspace

f
θt .  In 

the ideal 2D FBP, a ramp filter is applied before the IFFT. This in not possible in 3D PET since 
the projections are truncated in one dimension. Instead, a optimal window, ( )θ,rw  must be 
designed (after Kinahan, 1999) such that 
 

                                            ( ) ( ) ( ) θθθ
π
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                                         (3) 
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The optimization of this window is described below, and involves the minimization of error that 
is incurred during the forward projection and reconstruction. The errors are calculated as the 
deviations from the ideal sinc interpolation.  
 
4 Optimization Algorithm 
 
The algorithm scheme can be described by six operations on the raw PET data.  
 

1. Quantization and 2D Fourier transformation of initial data (real measurements 
including actual events, scatters, and randoms). 

2. Pre-interpolative weighting to correct for the non-homogeneity in the data spectrum 
(polar coordinates) relative to the fixed-size interpolation kernel (Kaiser-Bessel). 

3. Interpolation with the optimized MKB kernel from the data spectrum to the Cartesian 
image spectrum. This is the novel aspect of the algorithm.  

4. Post-interpolative weighting and filtering in the image spectrum domain (to remove 
effects arising from the non-ideal kernel). 

5. 3D inverse Fourier transform to the image domain. 
6. Pointwise multiplication of the image by . 1−w
7. Reprojection of the initial image by performing the preceding operations in reverse 

order, using different optimized parameters. 
8. Reconstruction of the final image by performing the preceding steps in forward order. 
 

The MKB window has the analytic form: 
 

                                          ( ) ( ) ( )[ ] ( )( )maJamJk
m

,11, 1 ωαωαω −⋅−= −                            (4) 
 
Here, ( mJ , )λ  is the modified Bessel function (Lewitt, 1990) of order , on parameterm λ . The 
explicit formulation (after Abramowitz and Stegun, 1972) is 
 

                                                                                 (5) ( ) ( ) ωωλαωπλα
π

dimJ m ∫ += −−
2

0

1 sincos2,,

In other words, the characteristics of the MKB window are controlled by three parameters. These 
are the order m , radius , and ‘governing constant’a α , which controls the shape of the main lobe 
and side-lobes in the frequency domain. These parameters are optimized for the reprojection and 
reconstruction phases of the algorithm.  
 The pre-interpolation weights are determined by the iteration (after Matej and Lewitt, 
2001), and are necessary because the density of signals in the data spectrum is not constant. A 
ramp filter, as discussed above, is insufficient since the exact variation of the density is generally 
not hyperbolically related to r . The iteration is: 

                  
( ){ } ( ){ } ( ){ } ( )[ ] ( ){ } ( ) ( ) ( )[ ] 11 ,,,,0;,,,,,,1 −− ∗=∗=+ ωθθθκωθκθκθκ krsrsrkririri         (6) 

 
The sampling function (similar to the delta function), ( ) ( ) Prrs ⊂∀= θθ ,1, , simply defines the 
region to begin the iteration. Here, r and θ  are in the frequency-domain. As becomes large, (6) i
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yields a final distribution of κ over the data spectrum (i.e., each point is weighted by a different 
value, determined by the interpolation kernel used). The authors did not carry the iteration out on 
all values of the data spectrum. The other κ values were obtained by iterating over a subset of 
P , and subsequently interpolating.  
 Post-interpolation weights are generally negligible ifκ is determined. However, since the 
number of iterations is finite, there will still be some residual error after interpolation. In theory, 
the interpolation and weighting procedures are commutative (switching the order gives the same 
result). The weight function can also be determined analytically, since 
( ) ( ) ( ) ( ) ( )ωλθωθθκ ,,, rskrsr =ℑ= . Since the kernel is symmetric in the frequency domain, 

this ought to be identical to the original ( )ωkℑ . It is not clear why the iterative solution is used, 
instead of the analytic one.  
 Thus, the entire algorithm can be expressed by the following mapping of data between 
the various domains: 
 

     ( ) ( ) ( ) ( )( ) ( ) ( )ωθκττθωθκθ krdkrrpzyxf ⋅⋅+ℑ⋅⋅ℑℑℑ= ∫ℜ
−− ,,,,,

1

)2()3(,1)3(,1        (7) 

 
We have disregarded the post-interpolation weighting or filtering. The image is reconstructed in 
polar spherical coordinates (since the image has three dimensions). The coordinates in the  

 system are then found by a standard transformation. The integration is simply the 
projection step into a coordinate system with an infinite range of angles.  
( zyx ,, )

 
 

 

The Fourier Reprojection Algorithm 
(Recapitulated from above) The zero-
padded truncated data is projected at  
selected angles. The projections are 
then converted to a polar spectrum 
through a 2D FFT. A weighting function 
is applied to this spectrum to 
homogenize the density data (since the 
Kernel is finite). This weighted spectrum 
is then interpolated into Cartesian 
coordinates by the MKB kernel. Post-
interpolative weighting and filtering may 
be applied (though it is often not 
necessary, since the first projection 
provides fairly good estimates. The 
resulting spectrum is converted into an 
image through the 3D IFFT. This image 
is reprojected, and the algorithm is 
carried again. (Adapted from Matej and 
Kazantsev, 2006). 
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5 Demonstration and Proof of Concept 
 
Parameter optimization is carried out by comparing the direct Fourier algorithms (above) with an 
ideal projection (in the forward projection phase), and for real data (during reconstruction). The 
normalized mean error is minimized as a function ofα for parameters , , and 

(length of zero-padding). The results are shown in FIGURE 1. As we expect, the windows in 
the time-domain are rather isomorphic to the common Chebyshev and normal Kaiser filters. The 
frequency responses look rather different for the forward-projection and reconstruction phases, 
however. The former is characterized by a sharper transition zone, but less attenuation.  

5.2=a 0=m
z

 

FIGURE 1 (a) The time-domain response of the MKB interpolation kernel for forward projection (FP) and the direct Fourier method (DFM). 
Parameters were optimized by looking for global minima in the normalize mean error of both procedures when compared to an ideal projection 
and real data respectively. (b) The corresponding Bode plot (amplitude of the 1D DFT of the Kernel). After Matej and Kazentsev, 2006.  
 
The parameters and are optimized by the resolution of the reconstruction. In contrast to 
forward projection, the reprojection error is highly robust to . In general, both errors are above 
the level introduced by quantization variance (and thus they can be optimized), but the minimum 
reprojection error using a 2D non-uniform Fast Fourier Transform (NUFFT) is  several orders of 
magnitude lower than the reprojection error for the 3D interpolator. The reconstruction error for 
this interpolator is shown in FIGURE 3(a). This is probably due to the noise caused by 
reprojecting an estimated image. Furthermore, the parameter values used are different (

a m
z

12=α  
for forward-projection and 16=α for reconstruction). This disparity is explained, firstly, by the 
fact that the data spectrum is homogenized by the pre-interpolation weighting function. 
Secondly, the even if the weighting function is not applied, we naturally expect the interpolator s 
to have different parameters because the spectrum has been expanded by the estimated values. In 
an actual PET experiment, the real parameters are expected to be different than the dry-
optimized parameters. Thus, in order to optimize the parameters de novo, it would be necessary 
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to do FRP on only a small, but sufficient, subset of the data (preferably in areas of high variation 
in signal intensity). 
 

 
FIGURE 2 (a) Quantitative difference from an ideal projection (with a sinc interpolator) using the MKB kernel. (b) Differences for the reprojection 
step. After Matej and Kazentsev, 2006. 
 

 
FIGURE 3 (a) The complete reconstruction error for a tissue phantom for optimized parameters and various zero-padding lengths. (b) Reconstruction 
of the tissue phantom with optimal parameters for both forward projection and reconstruction. (c) Error relative to the analytic projection and 
reconstruction. (d) A reconstruction in which the forward projection parameters are not optimized. After Matej and Kazentsev, 2006. 
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The resolution of the system was determined by viewing small sites of high activity (the local 
maxima in the phantom) as point sources. Since the reconstructed data is in voxelized form, a 
Point Spread Function (PSF) could be found from the data values surrounding this point. These 
data are shown in TABLE 1, and are, as expected, commensurate with the optimal parameters. It 
is a surprising result that the resolution itself is an inadequate means to optimize the parameters, 
since the FHWM is nearly constant asα is varied across an order of magnitude. This suggests 
that the resolution is a function of the native data (i.e., the number of samples in the data). The 
values obtained are similar to those reported (Yuan, communication). In contrast, the noise is a 
function of α , and is minimize (i.e., the variance is minimized) when α is optimized and the 
data is oversampled with . Similarly, the bias was minimized as well when 1=z α  was 
optimized. The bias also varied with the amount of zero-padding.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Resolution of 3D FRP as determined from an approximate point source of 
activity. The Full-Width Half Maximum (FHWM) does not vary over a large 
range of α , indicating that the quality of the interpolation does affect the 
resolution. 

 
The computation time for 3D FRP was reduced TO approximately 2.6% of the time required for 
a comparable reconstruction using standard iterative techniques (21s and 817s respectively), and 
was found to be dependent on the amount of zero padding. The data could be zero-padded at its 
full length ( ) with only an increase by 1.69 of the non-padded projections. (Matej and 
Kazantsev, 2006).  

1=z

FIGURE 4 (a) Profiles of the tissue phantom (with a series of highly active foci) after reconstruction for various parameters. (b) Resolution of the direct 
Fourier method (Full Width Half Maximum) along three axes. After Matej and Kazentsev, 2006.   
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6 Refinements of the Direct-Fourier Algorithm 
 
The optimization, thus far, has been based on the difference between the direct Fourier 
estimation and ideal (analytic) solutions. We suppose an equivalent result could be obtained if 
the parameters, collected as , were chosen such that the finite-kernel interpolation effect 
approaches the sinc effect. This could be done with a simply minimization algorithm: 

( *,, maα )
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This method only returns parameters that are unique to the data set (i.e., the projections). To 
translate this algorithm to clinical use,  
 
The authors have only optimized the parameters for the MKB kernel. A similar process can be 
carried out for other filters. Indeed, any Finite Impulse Response filter could be optimized using 
the minimization algorithm.  
 
Since the MKB window is time-symmetric, there is a well-defined group delay which can be 
determined from the transfer-function of the interpolator. This is simply given by ( )ωk . Thus, the 
group delay is given by the expression from (4): 
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We have used the explicit formulation of the modified Bessel function below. The expression 
yields a constant (since the parameters are constant), which is equivalent to the standard form of 
the group delay. This is a linear function of the tap (i.e., length in the time domain) and the 
sampling frequency. The phase response above can be minimized as a function of the three 
parameters (used to optimize the error). 
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The FRP algorithm can be used jointly with FORE in a scheme in which the rebinned projections 
are used to optimize the parameters. Similar approaches could be implemented with the iterative 
algorithms.  
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